A novel type of silencing factor, Clr2, is necessary for transcriptional silencing at various chromosomal locations in the fission yeast Schizosaccharomyces pombe.
نویسندگان
چکیده
The mating-type region of the fission yeast Schizosaccharomyces pombe comprises three loci: mat1, mat2-P and mat3-M. mat1 is expressed and determines the mating type of the cell. mat2-P and mat3-M are two storage cassettes located in a 17 kb heterochromatic region with features identical to those of mammalian heterochromatin. Mutations in the swi6+, clr1+, clr2+, clr3+, clr4+ and clr6+ genes were obtained in screens for factors necessary for silencing the mat2-P-mat3-M region. swi6+ encodes a chromodomain protein, clr3+ and clr6+ histone deacetylases, and clr4+ a histone methyltransferase. Here, we describe the cloning and characterization of clr2+. The clr2+ gene encodes a 62 kDa protein with no obvious sequence homologs. Deletion of clr2+ not only affects transcriptional repression in the mating-type region, but also centromeric silencing and silencing of a PolII-transcribed gene inserted in the rDNA repeats. Using chromatin immunoprecipitation, we show that Clr2 is necessary for histone hypoacetylation in the mating-type region, suggesting that Clr2 acts upstream of histone deacetylases to promote transcriptional silencing.
منابع مشابه
Silencing Motifs in the Clr2 Protein from Fission Yeast, Schizosaccharomyces pombe
The fission yeast, Schizosaccharomyces pombe, is a well-established model for heterochromatin formation, but the exact sequence of events for initiation remains to be elucidated. The essential factors involved include RNA transcribed from repeated sequences together with the methyltransferase Clr4. In addition, histone deacetylases, like Clr3, found in the SHREC complex are also necessary for t...
متن کاملFour chromo-domain proteins of Schizosaccharomyces pombe differentially repress transcription at various chromosomal locations.
Transcription is repressed in regions of the fission yeast genome close to centromeres, telomeres, or the silent mating-type cassettes mat2-P and mat3-M. The repression involves the chromo-domain proteins Swi6 and Clr4. We report that two other chromo-domain proteins, Chp1 and Chp2, are also important for these position effects. Chp1 showed a specificity for centromeric regions. Its essentialit...
متن کاملSHREC, an Effector Complex for Heterochromatic Transcriptional Silencing
Transcriptional gene silencing (TGS) is the mechanism generally thought by which heterochromatin effects silencing. However, recent discovery in fission yeast of a cis-acting posttranscriptional gene-silencing (cis-PTGS) pathway operated by the RNAi machinery at heterochromatin challenges the role of TGS in heterochromatic silencing. Here, we describe a multienzyme effector complex (termed SHRE...
متن کاملFission yeast mutants that alleviate transcriptional silencing in centromeric flanking repeats and disrupt chromosome segregation.
In the fission yeast Schizosaccharomyces pombe genes are transcriptionally silenced when placed within centromeres, within or close to the silent mating-type loci or adjacent to telomeres. Factors required to maintain mating-type silencing also affect centromeric silencing and chromosome segregation. We isolated mutations that alleviate repression of marker genes in the inverted repeats flankin...
متن کاملA Novel Epigenetic Silencing Pathway Involving the Highly Conserved 5’-3’ Exoribonuclease Dhp1/Rat1/Xrn2 in Schizosaccharomyces pombe
Epigenetic gene silencing plays a critical role in regulating gene expression and contributes to organismal development and cell fate acquisition in eukaryotes. In fission yeast, Schizosaccharomyces pombe, heterochromatin-associated gene silencing is known to be mediated by RNA processing pathways including RNA interference (RNAi) and a 3'-5' exoribonuclease complex, the exosome. Here, we repor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 32 15 شماره
صفحات -
تاریخ انتشار 2004